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13. Line transect data analysis
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Abundance estimation - résumé

• In a strip transect we assume we see everything
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• In line transect sampling, 
not everything is seen

– Need to estimate the 
probability of detection, pa

– pa is estimated from 
perpendicular distance data
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Estimating probability of detection, pa - résumé

ap̂ area under curve
area under rectangle

Average probability of detection:

Important assumption: animals are distributed uniformly between 0 and w
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Line transect sampling assumptions - résumé

• All measurements are accurate
• All animals on the transect line are detected

– Detection probability is 1 at zero perpendicular distance

• All animals are detected at their initial location
– No movement before detection

• especially in response to survey platform

• Sample data are representative
• Observations are independent

– For unbiased variance estimation

Criteria for a good detection function

• A model that:
– Can fit a wide variety of plausible shapes (model robust)
– Can fit data when many factors affect detectability (pooling robust)
– Has a shoulder: g'(0)=0 (shape)
– Generates estimates with good precision (efficiency)
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Some detection functions

Uniform

Half normal
Exponential
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Detection function models
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x = perpendicular distance
w = truncation distance (width of nominal strip)
 = standard deviation of perpendicular distance
 = parameter to be estimated

Half-normal:

Hazard-rate:

Hazard rate detection function

Hazard rate; σ = 0.8

β=1
β=1.5

β=3

β=5

Adjustment terms to improve robustness

• Series adjustments to the “key” detection function:
g(x) = key function × (1 + series adjustment)

• Series adjustments
– Cosine
– Simple polynomial
– Hermite polynomial

Key function

Key + adjustment

Cosine adjustment

All “wavy” functions
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Data truncation

• Sightings at large perpendicular distance contribute little 
to estimation

• But may lead to poor model fit and high variance

• Consider truncating data before model fitting
– Not uncommon to truncate around 5% of observations
– But need to decide on a case-by-case basis

• Might be better to choose a particular distance

Akaike’s Information Criterion 

AIC = - 2 loge(L) + 2q

• L is the maximized likelihood
- The likelihood is a statistical function relating the parameters of a 

model to the data

• q is the number of model parameters
• Used for comparing models
• Model with smallest AIC has most support from the data

- If two models have a difference in AIC of less than 2 units, they are 
considered to have more or less equivalent support from the data

• Can only use when the data are the same
- So, cannot compare models with different truncation distances

Goodness of fit tests:
how well does the model really fit the data?

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

F
itt

e
d 

C
um

ul
a

tiv
e

 d
is

tr
ib

ut
io

n 
fu

nc
tio

n

Empirical distribution function

• Chi-squared test
– For grouped data
– ∑ [ (Obs - Exp)2 / Exp ]
– Not very useful because the 

result depends on how the data 
are grouped 

• More useful is the Q-Q plot
– Quantile-Quantile plot

• Shows fit to data point-by-point

– Also
• Kolmogorov-Smirnov (KS) test
• Cramér-von-Mises (CvM) tests
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Kolmogorov-Smirnov test
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Empirical distribution function

• Uses largest difference 
between lines to 
measure goodness of fit

Cramér-von-Mises test
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Empirical distribution function

• Uses the sum of all 
squared differences to 
measure goodness of fit

– Can also use a weighted 
sum, which is a better 
measure of fit close to 
the transect line (good) 

Goodness of fit tests - summary

• Chi-squared test requires data to be grouped
– Results depend on grouping

• Q-Q plots show goodness of fit at “high resolution”
– without requiring grouping into intervals

• Kolmogorov-Smirnov and Cramér-von-Mises tests
– also without grouping into intervals

• Cramér-von-Mises test can be weighted
– to give higher weight to observations near zero
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• BUT smaller groups are more likely to be missed at greater 
perpendicular distance

– Regress group size (or log group size) on perpendicular distance (or 
detection probability)

– Value at intercept (distance = 0) should be unbiased
– In this case, we use: 

• Expected (estimated) group size, E[s], rather than mean group size

• If targets occur in groups (schools)
– Estimate density of groups, Ds

– Calculate mean group size, 
– Multiply to get density of animals, D

Group size
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• Parameter estimates (for species in groups)
pa = average detection probability within truncation distance, w
esw = effective strip width = pa x w
f(0) = 1 / esw
n/L = encounter rate of groups
Ds = density of groups
E[s] = expected group size
D = density of animals
N = abundance of animals

Results

Summary

• Estimate detection function
– Model

• Key function 
• Adjustment terms

– Consider truncating data
– Model selection

• AIC
• Goodness of fit

– Group size correction
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