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Introduction 

 
The Agreement on the Conservation of Cetaceans of the Black Sea, Mediterranean Sea and contiguous 
Atlantic area (ACCOBAMS) has been working for several years on defining an exhaustive program 
for estimating abundance of cetaceans and assessing their distribution and habitat preferences in the 
Mediterranean Sea (the "ACCOBAMS Survey Initiative"). This initiative consists in a synoptic survey 
to be carried out in a short period of time across the whole Mediterranean Sea and it will combine 
visual survey methods (boat- and ship-based surveys) and passive acoustic monitoring (PAM).  
 
This document was elaborated based on the documents prepared by the ACCOBAMS Scientific 
Committee that has worked for several years on the definition of the most appropriate methodologies 
for collecting data on cetaceans at the Mediterranean Sea scale, taking into account the protocols used 
in other regional contexts1. It presents specific information on monitoring by visual line transect 
surveys (conducted from boat and airplane) and by acoustic survey. It should be noted that it does not 
address all the tools and methods that could be used for cetacean survey, neither new technologies that 
are currently experimented (i.e. drones and satellite imagery). Significant information also comes from 
stranding networks. Lastly, this document is considering surveys using large ships, but the shipboard 
cetacean surveys conducted from small vessels would also make use of this document. 
 
Monitoring cetaceans species may be addressed at two spatial scales: 

1) Regional monitoring - if the requirement is to monitor the use of a specific area by a 
particular species, e.g. monitoring the status of relative abundance between and within years in 
national waters or marine protected areas. 

2) Population level monitoring - if the requirement is to monitor the status of a whole 
population, e.g. estimate density and abundance of cetaceans in the whole ACCOBAMS area. 

 
Before conducting any type of monitoring of animal populations, it is important to define the 
objectives. The main aim in both aerial and vessel-based surveys is to assess density and abundance 
and, if systematic monitoring programs are in place, assess potential trends over time. Monitoring at 
the regional level may require data collection throughout the year, to better understand seasonal 
patterns in distribution, whereas monitoring at the population level would mainly address inter-annual 
changes. 
 
Cetaceans generally occur in low densities and are highly mobile. They are difficult to spot and to 
follow at sea, even during good survey conditions, because they typically only show part of their head, 
back and dorsal fin while surfacing and spend the majority of their time underwater.  
 
There are a number of actions that need to be taken when initiating any type of monitoring, either for 
species distributional range or to estimate population abundance of selected species. 
 

1. Select the target species (surveys can be multi-species or single-species). 
2. Determine whether to monitor an entire population or a portion of it (in a given region). 
3. Define the population or area to monitor and the time-window. 
4. Define monitoring objectives. 
5. Consider logistics for the monitoring (e.g. size of area, weather, depth of area, available 

survey platforms). 
6. Conduct statistical power analysis to find the best method to meet the monitoring objectives. 
7. Conduct a cost-benefit analysis. 

 

                                                            
1
 e.g.  in the Atlantic waters within the framework of (i) the SCANS surveys undertaken to assess the populations of Small 
Cetaceans  in  the  European  Atlantic  and  North  Sea,  and  (ii)  the  CODA  surveys  (Cetacean  Offshore  Distribution  and 
Abundance in the European Atlantic) aiming to estimate cetacean abundance in European Atlantic waters. 
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Currently, there are at least five potential approaches to be used in monitoring cetaceans: 
 

1. Visual surveys from ship, aircraft or land observation platforms (LOP). 
2. PAM carried out during ship surveys with towed hydrophones. 
3. PAM performed by means of static acoustic monitoring, e.g. using T-PODs. 
4. Photo-identification and mark-recapture analysis. 
5. Satellite telemetry to track individual animals. 
6. A combination of all or some of the above methodologies. 

 
When deciding which monitoring method to implement, it is important to consider the limitations of 
each approach and compare the different methodologies. In general, surveys from ship or aircraft have 
a low temporal resolution, ship surveys may have bias due to responsive movements of animals, 
stationary acoustic systems have low spatial resolution and logistical problems with deployment, 
photographic identification relies on visual differences between individuals to allow identification, and 
telemetry typically only allows small samples resulting in much inter-individual variation. 
 
There are different types of platform and methods of detection that can be used for each approach, e.g. 
fixed observation points such as headlands or moving survey platforms such as ships and aircraft, or 
direct visual or acoustic detections of vocalizing animals, respectively. The methods can therefore 
range from very basic, yielding simple indices of abundance in limited areas, to very advanced 
providing accurate (how close the estimate is to the true value) and precise (the statistical variation in 
estimates generated from repeated samples) estimates of absolute abundance across wide areas. 
 
 

Target species 
 

Cetaceans 
 
Eleven species of cetaceans are considered do regularly occur in the Mediterranean area: short-beaked 
common dolphin (Delphinus delphis), striped dolphin (Stenella coeruleoalba), common bottlenose 
dolphin (Tursiops truncatus), harbour porpoise (Phocoena phocoena), long-finned pilot whale 
(Globicephala melas), rough-toothed dolphin (Steno bredanensis), Risso’s dolphin (Grampus griseus), 
fin whales (Balaenoptera physalus), sperm whales (Physeter macrocephalus), Cuvier’s beaked whale 
(Ziphius cavirostris) and killer whale (Orcinus orca). 
 
Knowledge about the ecology, abundance and habitat preferences of some of these species, including 
the most abundant ones, is in part scant and limited to specific sectors of the Mediterranean region, 
due to the uneven distribution of research effort during the last decades. In particular, the south-eastern 
portion of the basin, the coasts of North Africa and the central offshore waters are amongst the areas 
with the most limited knowledge on cetacean presence, occurrence and distribution. 
 
Other marine endangered species 
Even if cetacean species are the first targets of this monitoring effort, the observations of other marine 
endangered species, such as marine turtles, giant devil rays, monk seals and sea birds, and other 
elements such as marine debris, could be reported during the surveys. Specific protocols have to be 
designed for these opportunistic observations, bearing in mind that the primary objective is to collect 
data on cetaceans. 
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Dedicated vessel or aircraft visual surveys 
 
For monitoring programmes involving dedicated visual surveys both ship-based and aerial methods 
are well established. Although in some situations the choice of platform will be determined by 
logistical constraints, and despite the fact that a full and comprehensive comparison of aerial and 
vessel-based surveys has not yet been carried out, generally the method which provides an estimate 
with the required precision for the lowest cost should be chosen.  
 
For visual surveys, it is important to consider observer skill and experience. Observers may vary in 
sighting efficiency and observer training is important to obtain consistent results. Furthermore, 
consistency in data collection protocols, observers, survey design and planning is essential to 
guarantee reliable and robust results in the long term, especially when systematic monitoring 
programmes are scheduled. 
 
Line transect sampling is typically used to estimate abundance and assess density. In line transect 
sampling, a survey area is defined and surveyed along pre-determined transects. The distance to each 
detected animal is measured and consequently used to obtain a detection function, from which an 
estimate of the effective width of the strip that has been searched can be calculated. This is necessary 
because the probability of detecting an animal decreases the further away it is from the transect line. 
Abundance is then calculated by extrapolating estimated density in the sampled strips to the entire 
survey area. The calculated number is therefore an estimate of abundance in a defined area at a 
particular time. 
 
On ships, distances are either estimated by naked eye (observers should be trained in distance 
estimation and use individually calibrated tools) or using binoculars with distance calibrated reticules. 
Video range measuring methods allow distance to be accurately measured. To calculate the 
perpendicular distance to a sighting the radial angle should be recorded using an angle board. If an 
aircraft is used, an inclinometer reading, taken when the sighting is abeam of the aircraft, and the 
altitude of the aircraft allow precise calculation of the perpendicular sighting distance to the transect. 
Animals occur in groups in many cetacean species so the target for detection in a line transect survey 
is often a group rather than individuals. Hence, data on the group size and composition must also be 
accurately collected. 
 
When estimating absolute abundance using the line transect distance sampling method, it is assumed 
that all animals on the track line are detected, ie. the probability to detect an animal or a group of 
animals is maximum (g(0)=1). 
There are two potential categories of bias that may invalidate the assumption that g(0)=1:  

 availability bias (when the animal is underwater or, in general, not available to be seen during 
the period it is within visual range) and  

 perception bias (when for whatever reason an observer misses a whale that is available at the 
surface).  

 
To address the availability bias, data on diving behaviour of the target species could be taken into 
consideration and used as a correction factor. With trained observers and large cetaceans, perception 
bias can be considered equal to or approximately equal to 1. However, if g(0) is significantly lower 
than one (as is often the case for small cetaceans) then this will result in a considerably negatively 
biased estimate and the true value of g(0) must be estimated. For shipboard surveys, the 
double‐platform approach has been successfully used to address this problem. Availability bias is a 
particular problem for animals with very long dives; in the case of the sperm whale, acoustic 
techniques can overcome this problem. 
 
The logistics of aerial surveys often prevent the use of two independent platforms to allow estimation 
of the proportion of animals missed on the transect line, however, recently Partenavia P-68 planes 
have been equipped with two sets of bubble windows, to allow double-platform data collection by 
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means of independent observers on board of the same aircraft. Data collection protocols implementing 
aircraft circling back after a sighting to simulate the second research platform can be also used. 
 
Relative abundance using only one platform may be sufficient for detecting population trends, 
reducing surveys cost considerably and may be used to monitoring the status of the target population 
between large-scale absolute abundance surveys based on larger budgets. 
 
Another assumption for line transects methodology is that animals do not move prior to detection. This 
is not a problem for aerial surveys, but may bias shipboard surveys that typically survey at speeds 
around 10 knots. Evasive movements lead to negative bias in estimates of abundance, while attractive 
movements lead to positively biased estimates. Double-platform methodology can be applied to assess 
responsive movements. According to this method, observations are carried out from two platforms. 
Observers from the secondary or ‘tracking’ platform search an area ahead of the ‘primary’ survey area 
and sufficiently wide to ensure that animals are detected prior to any responsive movement to the ship, 
and to allow the tracking of animals until they are detected by the primary platform. The observers 
from the primary platform search independently of the tracking platform.  
 
To assist in planning a line transect survey and to analyse the data there is a comprehensive analysis 
program available called DISTANCE. 
DISTANCE provides software for estimating detection functions, density and abundance, and can be 
used to design the surveys. The latest version also includes mark-recapture distance sampling which 
allows analysis of dual observer distance sampling surveys, where the probability of detection on the 
trackline can be estimated. All versions of DISTANCE can be downloaded free from 
http://www.ruwpa.st-and.ac.uk/distance/. 
 
It is clear from the above examples that proper design of the survey is critical to address monitoring 
issues of cetacean populations, and in particular that a large enough area is covered so that shifts in 
distributions can be accounted for when analyzing the data. 
 
The areas to be surveyed are usually divided into survey blocks and the transects are designed to 
ensure equal coverage probability, using the dedicated software. 
 
Survey design 
The basic requirement for a line transect survey is that it provides representative coverage of the area 
for which an abundance estimate is desired (i.e. each point in the area has an equal or quantifiable 
probability of being sampled). A common design for vessel-based surveys at sea is a set of zig-zag 
lines following a regular pattern, starting from a random point along one edge of the survey area. In 
aerial surveys, ‘parallel transects’ are to be preferred and the coverage should be allocated according 
to target species’ density: more coverage where their density is higher. 
 
Survey blocks 
The development of appropriate survey blocks is a combination of biological factors (species, 
distribution/stock structure and abundance, habitat types etc.) and pragmatism associated with the 
logistics (numbers of vessels/planes; port/airport facilities; transit times; national boarders etc.). 
 
Effort required per block 
The effort required per block is determined as a function of ship/airplane time available in each block, 
available information on density of species and logistical constraints. The higher the level of coverage 
the better, as it allows for a larger sample size and therefore for more precise and robust abundance 
estimates. 
 
There are some practical points needing attention when designing a survey. Transects should, as far as 
possible, run perpendicular to any density gradient; for example, coastal surveys typically have 
transects that run more or less perpendicular to the shore line. 
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Closing mode versus passing mode 
In order to confirm certain information (species identification, group size and, historically, distance to 
sighting), cetacean surveys could be operated in ‘closing mode’. In this mode, once a sighting has 
been made and the initial distance and angle been recorded, the vessel then approaches the animal(s) to 
identify the species and group size. It is also used if, for example, it is desired to obtain biopsy samples 
or photographs.  
 
Nevertheless, operating in ‘closing’ mode can result in biased abundance and estimates. The preferred 
approach is thus to operate in ‘passing mode’ whenever possible (i.e. once a sighting is made the 
vessel remains on the designated course). However, this too has its problems, if, for example, many 
sightings are unidentified to species (the use of cameras with large stabilized zoom lenses may 
facilitate species identification). 
 
Deciding between vessel and aerial surveys 
Visual line transects surveys can be operated from a ship and from an aircraft. When deciding which 
platform to use, the relative merits of each approach for the species and areas to be covered must be 
considered. These include: 
 

 aerial surveys are usually more cost‐efficient per area than large vessel surveys, provided that 
the area to be covered is within the range of the aircraft from an airport and taking safety 
considerations into account (this often means not travelling more than 200 nautical miles or so 
offshore); 

 aerial surveys can take better advantage of good weather conditions, in that they can cover 
much larger areas in the same period; 

 aerial surveys are more efficient (and trackline design is easier) if the area to be covered has 
complex coastlines, many islands or large areas of shallow waters; 

 aerial surveys can be more tolerant of swell but less tolerant of sea state and low cloud – they 
can also be affected by poor weather at the airport even if survey conditions are acceptable at 
sea; 

 animals are less disturbed (if at all) by aircraft at normal flying altitudes and thus the problem 
of responsive movement is minimal; 

 for multispecies aerial surveys, compromises must be made in terms of the optimum altitude 
for flying e.g. flying at the optimum altitude for a harbour porpoise survey means that the 
searching area for larger species such as fin whales is considerably reduced; 

 vessels are generally better platforms for photo‐identification and aircraft are unsuitable for 
biopsy sampling and acoustic recording; 

 availability bias is much greater for aerial surveys; 
 it is generally easier to obtain a suitable vessel than a suitable aircraft.  

 
 
Platforms of opportunity 
Platforms of opportunity are a potentially valuable resource for monitoring but it is usually not 
possible to choose the time or area of operation. Survey coverage is therefore typically extremely 
uneven and some areas, crucial for the presence of a target species, may not be covered; such 
unrepresentative coverage may introduce bias into assessment of distribution and abundance. 
 
Platforms of opportunity using visual and/or acoustic methods are the cheapest way to monitor 
cetaceans. However, the success of using such vessels depends on finding the right platform that can 
cheaply and effectively accommodate observers and equipment and that cover appropriate areas at 
suitable speeds. These criteria are seldom fulfilled, especially since long term monitoring ideally 
requires the conditions to be consistent. Ferries may be suitable in some areas but spatial coverage is 
likely to be poor because of the fixed routes covered. Research vessels conducting annual monitoring 
of e.g. oceanography or fish resources have the potential to be valuable platforms of opportunity for 
monitoring if they take place at the right time(s) in the right place(s). 
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Acoustic surveys 
 
The collection of acoustic data for cetaceans has some significant advantages over visual methods. 
Acoustic methods can be automated, data can be collected 24-hrs a day, data collection is not 
dependent on observers skill, are less sensitive to weather conditions and can detect the presence of 
diving animals not available for visual observations. Disadvantages are that these methods rely on 
animals making sounds within a useful detection range and are identifiable to the species level. 
Furthermore, with exception of some species such as the sperm whale, methods to estimate abundance 
are not well established yet. 
 
All odontocetes (toothed whales) have the ability to echolocate by producing and listening to 
particular “click” sounds. This allows them to navigate during night time or in murky waters, and to 
find and catch preys. Most toothed whales such as most dolphins (e.g. bottlenose and common 
dolphins) also produce other frequency modulated sounds (whistles) used for intraspecific 
communication. The monitoring of these sounds allows for the collection of information on spatial and 
temporal habitat use, as well as estimation of relative density.  
 
Ship-board line transect acoustic survey is the most effective way of surveying sperm whales in the 
open sea and to collect the data required for accurate and robust estimation of absolute abundance in 
these waters. Visual-only survey techniques could introduce biases due to the long dive duration 
abilities demonstrated by the species and the little time generally spent at the surface, which makes 
them mostly unavailable for visual detection. 
 
Acoustic data from sperm whales can be used to assess both relative and absolute abundance provided 
that the appropriate equipment and survey design is followed. Sperm whales produce loud regular 
clicks, which can be detected at ranges of tens of kilometres. Sperm whale click characteristics are 
generally easily recognisable. Thus, software automatization has been developed and used on a 
number of surveys resulting into real-time tracking and location to single animals or groups. By 
tracking a whale for a period of time, crossed bearings to successive clicks give a position for each 
whale, which can be used in a distance-based analysis. 
 
A major task in this type of analysis is the assignment of clicks to individual whales when many 
animals are vocalizing simultaneously. Often, clicks from different whales are easily resolved using 
bearing information with dedicated software implementing beamforming . The regularity of the click 
train on each bearing indicates that they represent a single whale. On occasions where more than one 
whale is on the same bearing, clicks can be assigned to individuals using spectral and amplitude 
information, inter-click intervals and inter-pulse intervals. By identifying the most obvious whale in a 
group and removing those clicks from the analysis, identification of successive whales becomes 
progressively easier until all clicks are assigned. 
 
Since acoustic detection ranges are generally 10 km, a survey vessel travelling at 18 km per hour (10 
knots) will be in acoustic range of a sperm whale close to the track line for over an hour. Typically, 
sperm whales dive for approximately 30-50 minutes followed by 10-15 minutes at the surface. 
Clicking is generally continuous when the whales are submerged and they are silent while resting at 
the surface.  
 
On occasion, whales cease clicking regularly for periods of 2-3 hours, but evidence from tagging and 
observational studies suggests this is infrequent. The probability of a whale to remain silent for the 
entire time that the vessel is in range is therefore considered to be small, indicating that g(0) for 
acoustic surveys is close to 1. However, calves (which may represent up to 20% of the population) do 
not make long foraging dives and are not clicking regularly. Consequently, their detection may have 
low efficiency and a correction factor calculated from existing data should be applied. 
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Acoustic survey data for sperm whales can generally be collected simultaneously with visual data for 
other species particularly if the survey is operating primarily in passing mode. Survey vessels can also 
continue acoustic sampling in conditions unsuitable for visual survey (bad weather and night time). 
 
Abundance estimates, based on acoustic methods, are only possible for sperm whales. Potentially, 
information on distribution can be obtained from acoustic data for all species, although with much 
more uncertainties for common and striped dolphins, given the difficulties in distinguishing their 
vocalizations. 
 
A hydrophone array is towed behind each vessel. The equipment consists of a desktop computer 
running automatic detection software, the towed hydrophone, and various interface cards for getting 
sounds into the computer. The computer is running all the time, and one scientist is in charge of the 
acoustic system on each vessel. 
 
 

Photo-identification 
 
Photo-identification is a widely used technique in cetacean research that can provide estimates of 
abundance and population parameters e.g. survival and calving rate. It has been used for monitoring 
purposes for common bottlenose dolphins and killer whales since the 1970s. The technique relies on 
being able to obtain good quality photos of animals’ body parts that constitute unique recognizable 
markings. 
This method can be used for population level monitoring of species with appropriate markings, if data 
can be collected across the distribution of the population. This approach cannot be applied to species 
that lack suitable individual identification marks. 
 
Using photo-identification, it is sometimes possible to census the whole population when all 
individuals can be encountered at any given time in an area, all are well marked and no individuals 
seem to be moving in or out of the population. This is however unusual and has only been 
accomplished for a few populations of bottlenose dolphin, e.g. Sado Estuary, Portugal and Doubtful 
Sound, New Zealand, and for killer whales off Vancouver Island. More commonly, mark-recapture 
models must be applied to photo-identification data to estimate abundance (rather than a census the 
whole population) for specific areas that populations or part of populations occupy during one or more 
seasons of the year. 
 
Information on the proportion of the population possessing recognisable markings is also required to 
allow estimation of population size. 
The standard software program for mark-recapture analysis is program MARK 
(http://www.cnr.colostate.edu/~gwhite/mark/mark.htm), which includes a wide range of models to 
estimate population size and survival rates. There are models that can take account of heterogeneity of 
capture probabilities, a common problem in mark-recapture studies. These include program 
CAPTURE, a widely used multi-sample closed population model. If animals are believed to emigrate 
temporarily from the study area, there are also methods available for taking this into account in 
analysis. 
 
 

Satellite tracking 
 
Information on the movements and distribution of individual animals can help to identify important 
habitats, migration routes and to define boundaries between populations. Effective conservation of 
animal populations is enhanced by this information, which can also be valuable when designing 
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monitoring programmes. In recent years satellite tagging of cetaceans has been increasingly used to 
obtain information on seasonal movements, distribution and diving behaviour.  
 
To make inferences about large populations ranging over a wide area, many animals must be tagged, 
especially in species with high individual variation in behaviour. For some areas and species this 
would be a significant logistical challenge. 
 
Many kinds of tags have been used in studies of cetaceans, including VHF transmitters, satellite tags 
and GPS data loggers. Satellite telemetry has the advantage that because data are transmitted to an 
earth based station via a satellite, it is possible to follow animals all over the world without retrieval of 
the tag. 
 
Each tagged animal can provide a wealth of information but the limitation is that typically only a few 
animals can be tagged in a study due to limited funding or access to live animals. General conclusions 
are therefore often difficult especially if all members of the population are not equally available for 
tagging. 
 
 

Power analysis 
 
For any type of monitoring it is necessary to ensure that the chosen method and the study design will 
be able to provide an answer to the question posed with a useful level of precision. A power analysis 
can indicate the ability of the statistical procedure and the available or planned data to reveal a certain 
level of change i.e. the ability to detect a trend of a given magnitude. Power analysis can be used in 
two situations: firstly for interpretation of results of analysis of existing data; and secondly to plan 
studies to calculate the necessary sample size e.g. the length of time series of abundance estimates, or 
the coefficient of variation (CV) of those estimates, needed to detect specified rates of population 
change in a trend analysis. 
 
TRENDS is a freely available program designed to carry out a power analysis of linear regression, 
particularly in the context of monitoring populations in wildlife studies 
(http://swfsc.noaa.gov/textblock.aspx?Division=PRD&ParentMenuId=228&id=4740). TRENDS 
summarises the power analysis in five parameters: duration of study, rate of change, precision of 
estimates, Type 1 error rate, and power (1 - Type 2 error rate). The value of any one of these can be 
estimated if the other four are specified. TRENDS is therefore designed to help answer such questions 
as:  

 How many years are required to detect a trend? 
 How much effort would be required to detect a certain level of change in a certain time 

period? What is the probability of detecting a trend? 
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Annex 1 – Ship and aircraft specifications 
 
 
Ship specifications presented hereafter are for surveys using large ships but it should be considered 
that smaller vessels could also be used for carrying out cetaceans surveys. In this case, methodologies 
applied present some differences (it is not possible to apply the double-platform approach). 
 
 

Ship specifications 

 Ships need to be able to accommodate at least 10 observers (8 for the cetacean and turtle work; 2 
for the seabird work). 

 There must be two observation platforms (permanent or temporary), one at least 5m above sea 
level (often at the level of the bridge) and one at least 9-10m above sea level (often on the flying 
bridge or a temporary construction) – see Figures 1 and 2. 

 The two platforms must: 

 be audibly and visually isolated from each other. 

 be able to accommodate at least 3 observers – see Figure 3. 

 have an unobstructed view (from 270° to 90° with direction of sailing 0°). 

 Power supplies for computers and other equipment must be available (ideally this should be 
independent from the ship electric system, to avoid interferences). 

 The ship must carry appropriate navigational equipment.  

 Accurate information on location (GPS) and other information (e.g. wind speed) 
should be available through NMEA outputs from the ship’s instruments. 

 The ship must hold valid certification and comply with current safety regulations. 

 Standard cruise speed: no less than 10 knots.. 

 Endurance: ideally at least 25-30 days. 

 Good stability. 

 Capability for acoustic surveying (hydrophone array with a 200m cable). 

 Safe area for deployment and storage of hydrophone. 

 Power supply for hydrophone and computer. 

 Cable route between computer and hydrophone. 

 Preference for vessels that introduce least amount of noise into the sea at survey cruise speed 
(objective information on such noise levels can only be obtained by measurement at sea, however, 
the noise produced is likely to be more for larger vessels, vessels with variable pitch propellers 
and older vessels).  
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 Capability for continuous oceanographic data collection (desirable but not necessary). 

 

Fig. 1 - A 43m long vessel equipped with a temporary observation platform at about 9m above sea level. 

 

Fig. 2 - A 60 m long vessel equipped with a temporary observation platform at over 10 m on the sea level. 

 

   
Fig. 3 - Inside a platform. Fig. 4 - Hydrophone. 
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Aerial survey 
 
Survey aircraft must: 

 hold valid certification, comply with current safety regulations and be equipped with the 
following safety equipment: an emergency rescue boat, life vests (manual release) and two 
emergency satellite locator transmitters (one fixed in the plane, one portable); 

 provide a list of countries in which they are not able to operate; 

 be twin engine;  

 be able to fly at a speed of between 80 and 100 knots (ground speed) at an altitude of about 
180-200m when undertaking the survey; 

 have bubble windows on each side of the aircraft for two observers and good viewing 
conditions for the navigator in the front seat (preferable double bubble windows to apply 
double-platform data collection and analysis); 

 be high winged to allow for full downward view from the bubble windows on the track-line; 

 be equipped with GPS and a radar altimeter (geographical position, survey altitude, speed 
should be available through NMEA outputs from the aircraft instruments); 

 have enough fuel capacity to allow a minimum endurance of 5 hours; 

 have an intercom system that allows clear communication between all observers and the pilot; 

 have a power supply (12V or 24V) to connect a laptop  and other appliances; 

 The seats should be located parallel to or facing the windows to allow the seating to be as 
comfortable as possible during visual observations. There needs to be the option to darken the 
upper part of the bubble windows to reduce sun reflection on the window.  

 Pilots should have relevant experience of survey flying, especially at low altitudes over water. 

 

 
Fig. 5 - Partenavia P-68 Observer aircraft with bubble windows. 
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